; Project name : Assembly Library ; Description : Serial Server Support ; ; XTIDE Universal BIOS and Associated Tools ; Copyright (C) 2009-2010 by Tomi Tilli, 2011-2013 by XTIDE Universal BIOS Team. ; ; This program is free software; you can redistribute it and/or modify ; it under the terms of the GNU General Public License as published by ; the Free Software Foundation; either version 2 of the License, or ; (at your option) any later version. ; ; This program is distributed in the hope that it will be useful, ; but WITHOUT ANY WARRANTY; without even the implied warranty of ; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ; GNU General Public License for more details. ; Visit http://www.gnu.org/licenses/old-licenses/gpl-2.0.html ; %include "SerialServer.inc" ; Section containing code SECTION .text ;-------------------------------------------------------------------- ; SerialServer_SendReceive: ; Parameters: ; DX: Packed I/O port and baud rate ; ES:SI: Ptr to buffer (for data transfer commands) ; SS:BP: Ptr to SerialServer_Command structure ; Returns: ; AH: INT 13h Error Code ; CX: Number of 512-byte blocks transferred ; CF: Cleared if success, Set if error ; Corrupts registers: ; AL, BX, CX, DX ;-------------------------------------------------------------------- SerialServer_SendReceive: push si push di push bp ; ; Unpack I/O port and baud from DPT ; Port to DX for the remainder of the routine (+/- different register offsets) ; Baud in CH until UART initialization is complete ; mov ch, dh xor dh, dh eSHL_IM dx, 2 ; shift from one byte to two mov al, [bp+SerialServer_Command.bSectorCount] mov ah, [bp+SerialServer_Command.bCommand] ; ; Command byte and sector count live at the top of the stack, pop/push are used to access ; push ax ; save sector count for return value push ax ; working copy on the top of the stack %ifndef EXCLUDE_FROM_XUB ; DF already cleared in Int13h.asm %ifdef CLD_NEEDED cld %endif %endif ;---------------------------------------------------------------------- ; ; Initialize UART ; ; We do this each time since DOS (at boot) or another program may have ; decided to reprogram the UART ; mov bl, dl ; setup BL with proper values for read/write loops (BH comes later) mov al, 83h add dl, Serial_UART_lineControl ; Clears CF out dx, al mov al, ch mov dl, bl ; divisor low out dx, al %ifdef USE_UNDOC_INTEL salc ; Clear AL using CF %else xor al, al %endif inc dx ; divisor high push dx out dx, al mov al, 47h inc dx ; fifo out dx, al mov al, 03h inc dx ; linecontrol out dx, al mov al, 0Bh inc dx ; modemcontrol out dx, al inc dx ; linestatus (no output now, just setting up BH for later use) mov bh, dl pop dx ; base, interrupts disabled %ifdef USE_UNDOC_INTEL salc ; Clear AL using CF %else xor al, al %endif out dx, al ;---------------------------------------------------------------------- ; ; Send Command ; ; Sends first six bytes of IDEREGS_AND_INTPACK as the command ; push es ; save off real buffer location push si mov si, bp ; point to IDEREGS for command dispatch; push ss pop es mov di, 0FFFFh ; initialize checksum for write mov bp, di mov cx, 4 ; writing 3 words (plus 1) cli ; interrupts off... call SerialServer_WriteProtocol.entry pop di ; restore real buffer location (note change from SI to DI) ; Buffer is primarily referenced through ES:DI throughout, since ; we need to store (read sector) faster than we read (write sector) pop es pop ax ; load command byte (done before call to .nextSector on subsequent iterations) push ax %ifndef SERIALSERVER_NO_ZERO_SECTOR_COUNTS test al, al ; if no sectors to be transferred, wait for the ACK checksum on the command jz SHORT .zeroSectors %endif ; ; Top of the read/write loop, one iteration per sector ; .nextSector: mov si, 0FFFFh ; initialize checksum for read or write mov bp, si mov cx, 0101h ; writing 256 words (plus 1) sahf ; command byte, are we doing a write? jnc SHORT .readEntry xchg si, di ; swap pointer and checksum, will be re-swap'ed in WriteProtocol call SerialServer_WriteProtocol.entry .zeroSectors: inc cx ; CX = 1 now (0 out of WriteProtocol) jmp SHORT .readEntry ;---------------------------------------------------------------------- ; ; Timeout ; ; To save code space, we use the contents of DL to decide which byte in the word to return for reading. ; .readTimeout: push ax ; not only does this push preserve AX (which we need), but it also ; means the stack has the same number of bytes on it as when we are ; sending a packet, important for error cleanup and exit mov ah, 1 call SerialServer_WaitAndPoll_Read pop ax test dl, 1 jz SHORT .readByte1Ready jmp SHORT .readByte2Ready ;---------------------------------------------------------------------------- ; ; Read Block (without interrupts, used when there is a FIFO, high speed) ; ; NOTE: This loop is very time sensitive. Literally, another instruction ; cannot be inserted into this loop without us falling behind at high ; speed (460.8K baud) on a 4.77Mhz 8088, making it hard to receive ; a full 512 byte block. ; .readLoop: stosw ; store word in caller's data buffer add bp, ax ; update Fletcher's checksum adc bp, 0 add si, bp adc si, 0 .readEntry: mov dl, bh in al, dx shr al, 1 ; data ready (byte 1)? mov dl, bl ; get ready to read data jnc SHORT .readTimeout ; nope not ready, update timeouts ; ; Entry point after initial timeout. We enter here so that the checksum word ; is not stored (and is left in AX after the loop is complete). ; .readByte1Ready: in al, dx ; read data byte 1 mov ah, al ; store byte in ah for now ; ; note the placement of this reset of dl to bh, and that it is ; before the return, which is assymetric with where this is done ; above for byte 1. The value of dl is used by the timeout routine ; to know which byte to return to (.read_byte1_ready or ; .read_byte2_ready) ; mov dl, bh in al, dx shr al, 1 ; data ready (byte 2)? jnc SHORT .readTimeout .readByte2Ready: mov dl, bl in al, dx ; read data byte 2 xchg al, ah ; ah was holding byte 1, reverse byte order loop .readLoop sti ; interrupts back on ASAP, between packets ; ; Compare checksums ; xchg ax, bp xor ah, al mov cx, si xor cl, ch mov al, cl cmp ax, bp jne SHORT SerialServer_OutputWithParameters_Error pop ax ; sector count and command byte dec al ; decrement sector count push ax ; save jz SHORT SerialServer_OutputWithParameters_ReturnCodeInAL cli ; interrupts back off for ACK byte to host ; (host could start sending data immediately) out dx, al ; ACK with next sector number jmp SHORT .nextSector ;--------------------------------------------------------------------------- ; ; Cleanup, error reporting, and exit ; ; ; Used in situations where a call is underway, such as with SerialServer_WaitAndPoll ; ALIGN JUMP_ALIGN SerialServer_OutputWithParameters_ErrorAndPop4Words: add sp, 8 ;;; fall-through ALIGN JUMP_ALIGN SerialServer_OutputWithParameters_Error: ;---------------------------------------------------------------------- ; ; Clear read buffer ; ; In case there are extra characters or an error in the FIFO, clear it out. ; In theory the initialization of the UART registers above should have ; taken care of this, but I have seen cases where this is not true. ; xor cx, cx ; timeout this clearing routine, in case the UART isn't there .clearBuffer: mov dl, bh in al, dx mov dl, bl test al, 8Fh jz SHORT .clearBufferComplete test al, 1 in al, dx loopnz .clearBuffer ; note ZF from test above .clearBufferComplete: mov al, 1 ; error return code ALIGN JUMP_ALIGN SerialServer_OutputWithParameters_ReturnCodeInAL: %if 0 sti ; all paths here will already have interrupts turned back on %endif mov ah, al ; for success, AL will already be zero pop bx ; recover "ax" (command and count) from stack pop cx ; recover saved sector count xor ch, ch sub cl, bl ; subtract off the number of sectors that remained pop bp pop di pop si sahf ; error return code to CF ret ;-------------------------------------------------------------------- ; SerialServer_WriteProtocol ; ; NOTE: As with its read counterpart, this loop is very time sensitive. ; Although it will still function, adding additional instructions will ; impact the write throughput, especially on slower machines. ; ; Parameters: ; ES:SI: Ptr to buffer ; CX: Words to write, plus 1 ; BP/DI: Initialized for Checksum (-1 in each) ; DH: I/O Port high byte ; BX: LineStatus Register address (BH) and Receive/Transmit Register address (BL) ; Returns: ; BP/SI: Checksum for written bytes, compared against ACK from server in .readLoop ; CX: Zero ; DL: Receive/Transmit Register address ; ES:DI: Ptr to buffer ; Corrupts registers: ; AX ;-------------------------------------------------------------------- ALIGN JUMP_ALIGN SerialServer_WriteProtocol: .writeLoop: es lodsw ; fetch next word out dx, al ; output first byte add bp, ax ; update checksum adc bp, 0 add di, bp adc di, 0 mov dl, bh ; transmit buffer empty? in al, dx test al, 20h jz SHORT .writeTimeout2 ; nope, use our polling routine .writeByte2Ready: mov dl, bl mov al, ah ; output second byte out dx, al .entry: mov dl, bh ; transmit buffer empty? in al, dx test al, 20h mov dl, bl jz SHORT .writeTimeout1 ; nope, use our polling routine .writeByte1Ready: loop .writeLoop mov ax, di ; fold Fletcher's checksum and output xor al, ah out dx, al ; byte 1 call SerialServer_WaitAndPoll_Write mov ax, bp xor al, ah out dx, al ; byte 2 xchg si, di ; preserve checksum word in si, move pointer back to di ret .writeTimeout2: mov dl, ah ; need to preserve AH, but don't need DL (will be reset upon return) call SerialServer_WaitAndPoll_Write mov ah, dl jmp SHORT .writeByte2Ready .writeTimeout1: ePUSH_T ax, .writeByte1Ready ; return address for ret at end of SC_writeTimeout2 ;;; fall-through ;-------------------------------------------------------------------- ; SerialServer_WaitAndPoll ; ; Parameters: ; AH: UART_LineStatus bit to test (20h for write, or 1h for read) ; One entry point fills in AH with 20h for write ; DX: Port address (OK if already incremented to UART_lineStatus) ; BX: ; Stack: 2 words on the stack below the command/count word ; Returns: ; Returns when desired UART_LineStatus bit is cleared ; Jumps directly to error exit if timeout elapses (and cleans up stack) ; Corrupts registers: ; AX ;-------------------------------------------------------------------- SerialServer_WaitAndPoll_SoftDelayTicks EQU 20 ALIGN JUMP_ALIGN SerialServer_WaitAndPoll_Write: mov ah, 20h ;;; fall-through ALIGN JUMP_ALIGN SerialServer_WaitAndPoll_Read: push cx push dx ; ; We first poll in a tight loop, interrupts off, for the next character to come in/be sent ; xor cx, cx .readTimeoutLoop: mov dl, bh in al, dx test al, ah jnz SHORT .readTimeoutComplete loop .readTimeoutLoop ; ; If that loop completes, then we assume there is a long delay involved, turn interrupts back on ; and wait for a given number of timer ticks to pass. ; sti %ifndef SERIALSERVER_TIMER_LOCATION mov cl, SerialServer_WaitAndPoll_SoftDelayTicks call Timer_InitializeTimeoutWithTicksInCL %else push ax push bx mov ax, SerialServer_WaitAndPoll_SoftDelayTicks mov bx, SERIALSERVER_TIMER_LOCATION call TimerTicks_InitializeTimeoutFromAX pop bx pop ax %endif .WaitAndPoll: %ifndef SERIALSERVER_TIMER_LOCATION call Timer_SetCFifTimeout %else push ax push bx mov bx, SERIALSERVER_TIMER_LOCATION call TimerTicks_GetTimeoutTicksLeftToAXfromDSBX pop bx pop ax %endif jc SerialServer_OutputWithParameters_ErrorAndPop4Words in al, dx test al, ah jz SHORT .WaitAndPoll cli .readTimeoutComplete: pop dx pop cx ret